
Securing Resources in Collaborative Environments:

A Peer-to-peer Approach

Karlo Berket, Abdelilah Essiari, Mary R. Thompson
Lawrence Berkeley National Laboratory

1 Cyclotron Rd, MS 50B-2239, Berkeley CA 94720*
{kberket, aessiari, mrthompson}@lbl.gov

Abstract

We have developed a security model that facilitates

control of resources by autonomous peers who act on

behalf of collaborating users. This model allows a gradual

build-up of trust. It enables secure interactions among

users that do not necessarily know each other and allows

them to build trust over the course of their collaboration.

This paper describes various aspects of our security model

and describes an architecture that implements this model

to provide security in pure peer-to-peer environments.

KEYWORDS: security, authorization, peer-to-peer

1. Introduction

Applications based on peer-to-peer (P2P)

architectures have become popular because they allow

information to flow freely between distributed

components. However, this very feature holds back the

acceptance of these applications by the corporate and

scientific communities. In these communities, the

information flow needs to be controlled. For example, a

group of collaborating scientists would like to share the

initial findings of their research within their group, but do

not want these findings available to the general audience

until they have had a chance to verify them.

Providing security in P2P environments is difficult

due to the distributed and autonomous nature of the peers.

There are two major challenges: efficiently establishing

authenticated, encrypted communication channels

between the peers and distributing the authentication and

authorization enforcement for shared resources. It is also

desirable that the provider of the resource can securely

control its access without causing a significant burden on

either the provider or the user of that resource. We have

developed security mechanisms for establishing secure

connections between peers and for distributing and

verifying signed authorization policy [1]. Through the

 * The authors are supported by the Director, Office of Science, Office

of Advanced Scientific Computing Research, Mathematical Information

and Computing Sciences Division, of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231. This document is report

LBNL-58867, Disclaimer available at

http://www-library.lbl.gov/disclaimer.

application of these mechanisms peers can establish

spontaneous trust relationships, and securely share and

access resources in a straightforward manner. We

implemented and applied our security mechanisms in a

secure P2P information sharing application, scishare [2].

Our previous paper [1] concentrated on the

mechanisms of establishing authenticated and encrypted

channels between the peers. This paper describes the

authorization architecture that is required to implement

distributed authorization decisions in a P2P environment.

The remainder of this paper is organized as follows. First,

we present other work related to authorization in P2P

environments. We introduce a collaborative application

model for a P2P environment in Section 3. Then, we

discuss the particular authorization challenges of this

environment in Section 4. In Section 5, we present a

security model that addresses the authorization challenges

of this environment. Then, we present the authorization

architecture in Section 6. Finally, we present our

conclusions and future work in Section 7.

2. Related Work

A number of authorization systems have been

developed to provide access control to shared resources in

distributed environments [3][4][5][6]. While these

systems do not address highly dynamic or purely

decentralized collaborations, they provide some useful

concepts. CAS [5] is a system that uses the new IETF

standard X.509 proxy certificates [7] to delegate access

rights from a central server to a user. We intend to use a

similar mechanism to delegate rights from one user to

another in order to facilitate temporary access to

resources. Both Akenti [6] and VOMS [3] use attribute

certificates to assign attributes to users in a verifiable

way. PRIMA [4] introduces the idea of privilege

management. A privilege represents the rights that a user

has to a resource and can be stored in a verifiable

certificate. Each of these systems has some dependence

on central servers to provide the authorized access

information and each depends on a few specified trusted

Certification Authorities (CA) to provide X.509 public

key certificates.

Akenti provides an example of decentralized access

control by permitting most policy to be held in signed

certificates. This allows multiple stakeholders to write

policy for resources. The Akenti policy decision engine

can then gather and verify the policy and attribute

information. Allowing a new user to access resources still

requires that the user have an X.509 certificate from a

trusted CA. Furthermore, the user must be explicitly

granted some attribute or added to the policy files, which

is not optimal for spontaneous collaborations.

The following P2P applications each provide some

access control over their resources. Groove [8][9] allows

a small group of collaborators to form spontaneous shared

spaces in which they exchange information. It essentially

implements a simple public key infrastructure (PKI)

without certificates to build trust among users. Groove

provides mechanisms for simplifying the building of

collaborations and has automated a number of protocols

to hide the key management issues from the users. It also

provides support to gradually build trust through its built-

in invitation protocol. Groove does not support fine-

grained access control to individual resources.

Waste [10] is a secure file-sharing system that

provides security of information within a small, trusted

group of peers. It secures all communication at the

transport-level using Transport Layer Security (TLS) [11]

and builds a PKI web of trust between the trusted peers.

Waste assumes that all of the trusted peers are equal. In

addition, peers are forced into trust relationships that are

commutative and associative. Thus, any peer that is

allowed into the system has full access to all the

information in the system.

LionShare [12][13] is an Internet2 project that aims

to facilitate legitimate file sharing among individuals and

educational institutions around the world. It promises

secure file-sharing capabilities for the easy exchange of

image collections, video archives, large data collections,

and other types of academic information. The LionShare

security model is based on three requirements: files

should not be shared anonymously, an anonymous search

facility should exist, and file owners must have the ability

to control access to their files using verifiable attributes.

3. Application Model

We consider an application that consists of a set of

distributed application components. Each component

provides identical communication and security interfaces,

and is referred to as a peer, Pi. Each peer, Pi, has a user

identity, Ui associated with it. The user identity may

represent the person who is using this application

component, the organization that has deployed this

application component, etc. A single user identity may be

associated with multiple application components, but not

vice versa.

The set of all peers forms a peer group G. The peers

communicate by exchanging messages. A peer, Pi, can

send a message to any other peer, Pj, or to the peer group,

G. Communication between two peers, Pi and Pj, is

direct, i.e. we do not consider the scenario where a third

peer, Pk, acts as proxy, forwarding messages for the

communication. Messages sent to the peer group G are

intended for every peer in G. Each message is received

by a proper subset of the intended recipients. The peers

form a closed group in the sense that only peers can send

messages to the group.

A peer, Pi, may disconnect from G at any time. A

disconnected peer does not receive or send any messages

within G while it is disconnected. Peers may disconnect

from G frequently and for prolonged periods of time. The

likelihood of any given peer, Pi, staying connected to

group G for the entire lifetime of G is assumed to be

negligible.

A peer, Pi, may provide a set of resources, R(Pi), to

group G. A resource may be a file, a scientific

instrument, a chat room, etc. The holder of the user

identity, Ui, governs access to a resource, R in R(Pi) . The

peer, Pi, enforces access to this resource, R. In order to

gain access to a resource a user must have their user

identity authenticated by the peer and meet the

authorization requirements for access to that resource.

4. Authorization Challenges

The application model described in Section 3

provides unique challenges in authorization. The peer-

based model treats all application components equally;

whether they behave as clients, servers, certificate

authorities, etc. The dynamic membership of the group

does not allow us to assume that any peer will be highly

available. Thus, the traditional notions of highly available

certificate authorities and authorization servers are not

applicable. Their roles need to be filled by the individual

peers, working in concert when appropriate.

The first authorization challenge arises from the

collaborative application requirements to support the

rapid admission of new users. New collaborators need to

be provided basic access to the application as soon as

possible, i.e. immediately. This requirement makes

infeasible the standard approach of requiring a central

administrator to authorize each new user.

Revocation of access rights is also a major challenge

in such an environment. Typical solutions, such as the

Online Certificate Status Protocol (OCSP) [14] assume

that an authoritative server is always available. Certificate

Revocation Lists (CRLs) [15] relax this requirement a bit,

but still assume that a fresh CRL can be obtained from an

authoritative server at regular intervals. The Simple

Certificate Validation Protocol (SCVP) [16] allows for

both of these revocation methods. SCVP allows a client

to delegate certificate path construction and certificate

path validation to a server. The path construction or

validation (e.g. making sure that none of the certificates in

the path are revoked) is performed according to a

validation policy, which contains one or more trust

anchors. It allows simplification of client implementations

and use of a set of predefined validation policies.

The application model also places a stronger security

role on the end-users, who are providers of resources. In

this model, it is very likely that the end-users are

determining the authorization requirements for accessing

resources. Thus, the authorization interfaces presented to

the average user need to be clear and concise.

5. Security Model

We have designed a security model to meet these

challenges. The underlying assumptions of our model are:

Authentication is based on user identity (e.g an X.509

credential), rather than peer identity (e.g. IP address);

Each user must have some authentication token that can

be recognized by all the other peers on which

authorization rules can be based; All communication

between peers takes place over authenticated encrypted

channels; Each provider is entirely responsible for setting

and enforcing access to the service or resource it provides.

We use X.509 public-key certificates [15] as the

authentication token for the user identities. This allows us

to leverage existing support for the X.509 public key

infrastructure (PKI). The X.509 PKI provides scalable

key management, works with widely available TLS

implementations, e.g. OpenSSL[17], to provide secure

connections, and provides keys that can be used to

digitally sign authorization and attribute assertions.

In order to allow new users to easily join an existing

collaboration, we automatically provide a self-signed

X.509 certificate, called a pseudo-certificate, to users the

first time they use the system. These credentials allow

users that do not already have a credential from a trusted

Certification Authority (CA) to authenticate into the

collaboration. A pseudo-certificate contains a

Distinguished Name (DN) for the user, which is self-

selected and may not be globally unique and a public key

that, due to the sparseness of the key space, is assumed to

be unique. Thus, pseudo-certificates can be assumed to

be unique and can be used as an authentication token.

Peers can therefore build trust based on pseudo-

certificates. All users of collaborative applications using

this communication model are thus able to immediately

and securely participate in the collaboration. They do not

have to wait for an administrator to grant them

appropriate credentials just to cross this threshold.

Note that a CA is considered trusted if the relying

party has read and agreed with the CA's certification

policy and has decided to trust the binding between the

DN in the certificate and the individual holding the

private key. In the case of pseudo-certificates there is no

vetting that the name honestly represents the individual

holding the private key. The only assurance is that the

same key will represent the same individual each time it is

used. Thus all trust in the holder of these keys must be

done individually on the basis of behavior or out-of-band

information. The handling of access rights revocation in

our model is based on the type of resource being

accessed, as well as the user type. Our model makes a

clear distinction between users with pseudo-certificates

and those with CA-signed certificates. We use the term

authenticated user to be a user who is known to possess

the private key that corresponds to the pseudo or CA-

signed public-key certificate he has presented and the

term validated user
1
 to be an authenticated user whose

certificate can be traced back to an accepted CA. The

most significant difference between authentication and

validation is that in the latter process each certificate in

the chain is checked to see if it has been revoked. This

process usually requires access to some central service

provided by the CA.

We classify the resources shared within a

collaborative application as low-value or high-value. The

difference between low-value and high-value resources is

whether all the credentials used in establishing

authorization need to be validated as well as

authenticated.

Access rights are often granted to users based on the

trust placed in the holder of the authentication token. In

longer-term collaborations, the trust relationships between

users may vary over time. Thus, it is important to allow

the resource providers to grant and change access rights

for users based on this trust relationship. In our security

model, resource access policies can range from complete

access to any user to specific access for individual

validated users. Since all users in our model must be

authenticated a peer is able to capture the certificates of

all of the users it interacts with. The trust relationship

with these users can then be measured based on off-line

information such as recommendations from other users or

user behavior during previous interactions. Thus, a user

can easily join a collaboration and gradually be granted

access rights.

The policy aspects of our security model are strongly

influenced by our experience with the Akenti

authorization system [6]. Akenti was designed to use

distributed authorization policy, in contrast to the more

common approach of having all policy local to the

resource or alternatively on a central trusted server. The

access policy consists of policy rules, which are stated in

terms of attributes of a user or resource. Policy rules and

attribute assertions are signed documents (certificates)

that can be stored in a distributed manner and are gathered

from a set of locations and verified at the time the

authorization decision is made. This approach matches

our need to support both local and peer shared policy. An

attribute is simply some characteristic of a user, such as

identity, group membership, a role or a clearance level. A

policy rule states what attributes a user must have to get a

specific type of access to a resource.

1 A validated user corresponds to a trusted user in the PKI literature. We

reserve the word trust to refer to the level of privileges or authorizations

that a user has, in other words, what actions they are trusted to do.

6. Authorization Architecture

In this section we present a flexible authorization

architecture that implements the presented security model.

This architecture is suitable for applications that involve

sharing of high-value resources, as well as general

collaborations where users only need a reasonable sense

of security. We have divided the authorization system into

five components: a Validation Manager that manages,

discovers, and validates X.509 identities, an Attribute

Manager that generates and looks up attribute assertions,

a Policy Manager that creates and shares policy rules, a

Resource Manager that manages the protected resources,

and a Delegation Manager that manages the delegation of

access rights. At the end of this section we present an

example of how these components interact.

VALIDATION MANAGER

The Validation Manager (VM) allows resource

owners to designate trusted Certification Authorities

(CA). The VM stores the set of CA X.509 public key

certificates that are trusted by the user. The user may also

provide the location of the public directories that contain

the X.509 identity certificates issued by a CA and the

location of the certificate revocation lists (CRL)

maintained by a CA.

The VM also checks whether a certificate belongs to

a validated user. A certificate passes this test if it’s

certificate chain is valid, i.e. the signature of each

certificate can be verified using a public key contained in

the chain, if no entity in the chain has been revoked, and

if one of the CAs in the chain has been stored at the VM.

The VM does not assume that the whole certificate chain

is presented to it with the certificate. It locates any

missing certificates by checking public directories and

P2P resource discovery. Pseudo-certificates can never be

validated since there is no way to tell if a pseudo-

certificate has been revoked.

In summary, the Validation Manager performs the

following operations: manage the list of trusted CAs.

(add, remove, edit); validate entity (users, attribute

issuers, authorization policy issuers) certificates; search

for X.509 certificates/CRLs using server-based directories

or P2P discovery; provide X.509 certificates/CRLs in

response to P2P queries.

ATTRIBUTE MANAGER

The Attribute Manager (AM) can support a number

of attributes, such as group, role, organization or

licensing. Without loss of generality, we will concern

ourselves with the group attribute in order to best explain

what this component does. A group is simply a set that

has a name and one or more owners (group authorities).

Groups can be private (used and stored at only one peer)

or public (named sets visible to other users).

A user belongs to a private group if that user's DN or

public key is listed in that group’s set. A user belongs to

a public group if that user has a ‘valid’ X.509 attribute

certificate [18] for that group signed by one of the group’s

attribute authorities. We note that ‘valid’ does not mean

‘validated’. A valid certificate can pass all the tests

(expiration, signature, etc.) without validating the

attribute authority with the Validation Manager. Our

model allows such certificates to be acceptable when used

during access decisions for low-value resources. This

allows un-validated users (including pseudo-users) to

manage and belong to groups.

A user can be removed from a private group simply

by removing the user from that group’s set. Removing a

user from a public group requires the use of a revocation

mechanism much like the one used for X.509 identity

certificates.

In summary, the Attribute Manager performs the

following operations: allow users to create public and

private user attributes; define and manage names of public

attributes so that users can reference them; allow users to

search for public user attributes using P2P queries;

provide public user attribute information (attribute names,

users, owners, attribute certificates and CRLs) in response

to P2P queries; check whether a user satisfies an attribute.

POLICY MANAGER

The Policy Manager (PM) manages and checks

policy rules. A policy rule has a name, one or more

owners, a condition, and zero or more actions. Like

attributes, policy rules can be private (stored at the

resource to which it applies) or public (named and visible

to other peers). Public rules are necessary to support

multiple stakeholders who may not have login privileges

at the resource site. Rules can be combined using Boolean

operators ‘and’ and ‘or’. Combined rules are given names

and are marked as public or private. A rule composed of

at least one private rule must also be private. A user that

satisfies a rule’s condition is granted the rights listed in

the rule.

Public rules can be opaque or transparent. Opaque

rules are evaluated at the creator’s site and require the

creator be online. Transparent rules are evaluated by each

involved entity and are used to secure access to common

resources (shared spaces, chat rooms) that are

implemented in a decentralized manner, e.g. on top of a

decentralized secure group communication scheme such

as SGL [19]. In such systems, every peer must be able to

evaluate the policy rule when a member joins or leaves.

The group configuration (members, session key, etc.)

stays consistent across the peers as they all arrive to the

same decision. This decentralized approach allows,

among other things, subgroups of users to persist during

network partitions.

In summary, the Policy Manager performs the

following operations: allow users to create public and

private rules; allow users to search for public rules using

P2P queries; provide public rules in response to P2P

queries; define and manage names of public rules so that

users can reference them; check whether a user satisfies a

rule.

RESOURCE MANAGER

The Resource Manager (RM) allows users to register

their protected resources into a local database and to map

a combined or single policy rule to one or more resources.

Resources can be marked as high-value or low-value.

When enforcing access to high-value resources, the RM

makes sure that all authorization elements are validated.

While this is the rigorous approach to handling distributed

policy, we have found in practice that many P2P

resources do not require that level of security. Thus for

low-value resources, real-time checks for revocation are

skipped and policies are allowed to specify holders of

pseudo-certificates as authorized users and attribute

authorities. If a relying party has reason to believe that a

pseudo-certificate has been compromised or no longer

trusts the holder of such a certificate, he must take action

to remove any access granted to this user from his

authorization policies.

In summary, the Resource Manager performs the

following operations: allow users to map policies to

resources; allow users to mark resources as high or low

value; search for resources owned by others using P2P

queries; provide resources’ information in response to

P2P queries; determine users’ access rights to resources.

ACCESS DECISION PROCESS

Figure 1 shows how the presented components

interact during an access decision. A user U1 is

attempting to access a resource R owned by user U2. The

Resource Manager, at U2, determines the mapped policy

P and the sensitivity level L. If L is high-value then U1

must be validated and RM calls on the Validation

Manager to perform this check. RM then hands these

arguments together with U1’s name to the Policy

Manager who evaluates the policy P. In this example, P is

private and P’s condition simply requires a user to belong

to group G. Since P is private and thus owned by U2, the

P M does not need to interact with the VM to check

whether U2 is validated or not. The PM checks with the

Attribute Manager to see if U1 belongs to group G. Since

G is public the AM gets the necessary attribute

certificates and calls on the VM to validated G’s

authority. If everything succeeds then the actions listed in

P are returned to the application.

DELEGATION MANAGER

Delegation of access rights to other users provides a

quick and a simple way of allowing temporary and

restricted access to common resources such as shared

spaces and chat rooms. The benefits are huge since users

can now be invited to join collaborations without having

to go through the long process of obtaining the necessary

attribute credentials.

Resource

Manager

Application

Policy

Manager

Attribute

Manager

Validator

(U1, R)

(U1, P, L)

(U1, G, L)

(U1)

(G's authority)

Figure 1: Access decision steps.

The Delegation Manager (DM) uses a delegation

protocol similar to the one in [5]. At the end of this

protocol a certificate in the form of an X.509 proxy

certificate [7] is generated. These certificates tie a user to

a list of access rights and can be used as authentication

tokens to SSL/SGL. The verification process of these

capabilities is rather simple. In the case of an invitation,

the signing party must have an invite capability. In the

case of an escort, the signing party must have an escort

capability and the guest can only use the resource if the

signing party is present. Rejecting a user is also

straightforward and can be used to deny access to

someone else’s guest. We do not address the revocation

of capability certificates as they are meant to have short

lifetimes. Figure 2 shows an example of user U1 inviting

user U2 to resource R.

P2 (U2)P1 (U1)

Delegation

Manager

Application

Resource

Manager

Delegation

Manager

(U1, U2, R, INVITE)

(U1, R, INVITE)

(INVITATION)

Application

(INVITATION)

Figure 2: Invitation example.

In summary, the Delegation Manager performs the

following operations: allow users to invite, escort, or

reject guests; allow users to request invitations and

escorts.

7. Conclusion

We have introduced a flexible security solution for

pure P2P environments. By using a P2P resource

discovery service to discover public groups and policy

rules the overall system is tolerant to policy issuers being

offline or unreachable. The introduction of pseudo-

certificates allows users to easily join a collaborative

application. Our model enforces authenticated access to

public resources, which allows users to meet each other

and facilitates the building of trust relationships. The use

of resource sensitivity levels allows casual collaborations

to be secured without requiring that all users have X.509

public key certificates from trusted CAs. In the future, we

plan to look into caching and duplication mechanisms to

provide a greater range of sensitivity levels.

Our file sharing application has already used many of

these concepts to provide users with a simple and a secure

way of sharing files. We plan to re-engineer it to adopt its

P2P resource discovery service for locating access control

information if such information is not available from

central servers. We also plan to apply our security

implementation to a secure chat application. The results

of these two deployments should help us further evaluate

the usefulness of the various components of our security

model.

8. References

All referenced web pages were verified to be correct

on September 8, 2005.

[1] K. Berket, A.Essiari and A. Muratas, “PKI-Based

Security for Peer-to-Peer Information Sharing,”

Proceedings of the Fourth IEEE International

Conference on Peer-to-Peer Computing, Zurich,

Switzerland, Aug. 25-27, 2004.

[2] “scishare”, http://dsd.lbl.gov/scishare/.

[3] R. Alfieri, et.al. “Managing Dynamic User Communities

in a Grid of Autonomous Resources”, Proceedings of

Conference for Computing in High Energy and Nuclear

Physics, La Jolla March 24-28, 2003

[4] M. Lorch, D. Kafura, “The PRIMA Grid Authorization

System” , Journal of Grid Computing, 2(3), 2004, 279-

298

[5] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S.

Tuecke, “A Community Authorization Service for Group

Collaboration”, Proceedings of the IEE 3
rd

 International

Workshop on Policies for Distributed Systems and

Networks, 2002.

[6] M.Thompson, A. Essiari, S. Mudumbai, “Certificate-

based Authorization Policy in a PKI Environment”, ACM

Transactions on Infomation and System Security

(TISSEC), 6(4), 2003, 566-588.

[7] S. Tuecke, D. Engert, I. Foster, V. Welch, M. Thompson,

L. Pearlman, and C. Kesselman, “Internet X.509 Public

Key Infrastructure Proxy Certificate Profile”, RFC 3820,

2004.

[8] A. Oram, editor, Peer-to-peer: Harnessing the power of

disruptive technologies (O’Reilly & Associates, Inc.,

Sebastopol, CA, 2001).

[9] “Groove, Networks”, http://www.groove.net/.

[10] “Waste”, http://waste.sourceforge.net/.

[11] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,

January 1999.

[12] “LionShare project,” http://lionshare.its.psu.edu/main/.

[13] “LionShare: Connecting and Extending Peer-to-Peer

Networks,” LionShare White Paper Draft, October 2004,

http://lionshare.its.psu.edu/main/info/docspresentation/Li

onShareWP.pdf.

[14] M. Myers, R. Ankey, A. Malpani, S. Galperin, and C.

Adams, “X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol – OCSP”, RFC 2560, 1999.

[15] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, and W.

Ford, “Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL)

Profile”, Internet Draft, April 2005.

[16] T. Freeman, R. Housley, A. Malpani, D. Cooper, and T.

Polk, “Simple Certificate Validation Protocol (SCVP)”,

Internet Draft, February 2005.

[17] OpenSSL, http://www.openssl.org/.

[18] S. Farrel, R. Housley, “An Internet Attribute Certificate

Profile For Authorization”, RFC 3281, 2002.

[19] D.A. Agarwal, O. Chevassut, M.R. Thompson, G.

Tsudik, “An Integrated Solution for Secure Group

Communication in Wide-Area Networks”, Proceedings

of the 6th IEEESymposium on Computers and

Communications, Hammamet, Tunisia, July 3-5, 2001, pp

22-28.

[20] D. Agarwal, M. Lorch, M. Thompson, and M. Perry, “A

New Security Model for Collaborative Environments, ”

Proceedings of the Workshop on Advanced Collaborative

Environments, Seattle, WA, June 22, 2003.

